Implementation

Cohort 1 Team 9

Dominic Hall
Firas Marzouk
Ben Morrison
Harry Whittaker
Amelia Wigglesworth
Zehang Li

3. Implementation [25 marks]:

a)

b)

Provide documented code for a working implementation of the game that meets the
remit, requirements and concrete architecture for Assessment 2. Your code
comments should highlight new or extended sections of code, and should be
consistent with your change report. Code can be submitted in the zipfile, or via a link
to a repository with a verifiable date before the hand-in deadline. An executable JAR
of the game, that includes all external dependencies, must also be included in the
zipfile. (15 marks)

Explain how your code implements your architecture and requirements
(incorporating your recorded changes for Assessment 2). Briefly explain any
significant new features, e.g. non-primitive data types, significant algorithms or data
structures. Give a systematic report of any significant changes made to the previous
software, clearly justifying each change, and relating it to the requirements and
architecture by pointing to relevant class names and reguirement IDs. Note that, if a
change has significant side effects, it needs a solid software engineering justification.
State explicitly any of the features required for Assessment 2 that are not (fully)
implemented. (10 marks, < 4 pages)

3.(a)
https://github.com/yorkpirates/Assessment-2-Game
https://assessment2.yorkpirates.uk/game/Pirate-Game-Group-9.jar

3. (b)
Implementation Architecture

Our code implements the architecture by sticking primarily to the hierarchy that is laid out in
the abstract.This can be seen primarily by how entities are composed. Entities ,which would
be classified as Game Objects ,are composed from components giving basic functionality
which can be later built upon. Such as the Renderable component which holds sprite and
other graphics related things. This can be seen in figure 3.1.3 where you can see the
composition of entities and which components they use.

When we have made changes to the code they have primarily been changes to inherited
classes which already conform to the architecture and have endeavoured to keep them
inline with it. When we have added classes we have kept to the architectural design by
adding in classes that stick to the predefined abstraction and fitting them into the
architecture.

Implementation of Requirements

Our code implements the requirements by constructing first the foundational layer which is
the game world and then populating it with actors/entities. The code gives them the ability to
interact with the world and these interactions are mediated by Managers. It also gives the
player control over one of them thus allowing the player to interact with other entities and the
world. This allows the code to meet the requirements as it provides the functionality required
by it primarily for the player.

We made additions to the inherited code as well as modifications to meet the requirements
such as adding monsters and weather and their interactions with the player and the world.

Changes to Previous Software

We added a save game file that was XML along with methods for both reading and writing
this format. We chose to use the STAX parser because of its speed and memory efficiency.
The structure of how it parses the file in a linearly sequential manner also suited the
functionality we wanted of loading a game.

Another significant new feature was the Shop. The requirement ‘UR_SPEND_MONEY’
requires a way for the player to spend the plunder that they have earnt during game play. We
implemented a shop feature, with buttons a user can press to exchange money for goods,
such as ammo and power ups.

The previous game had not yet implemented the firing of cannonballs from a college to a
ship. To implement this we had to write a new class, as the previous cannonball classes only
allowed a cannonball to be fired from a ship. Our version of the cannonball - which would fire
from colleges only - would give more damage, and fire directly at the user in regular intervals
to increase the difficulty of attacking the college - the user will always have to be on the
move.

The table below outlines the significant changes that we made to the previous software,
including our justification for doing so, the requirements it met and the architecture it
impacted.

Implemented Features

Change

Justification

Requirement

Architecture

Changes to
college for saving

Is alive now returns a bool, so when saving we
know whether or not the college is alive.

Added a method to destroy all college buildings
effectively killing it, which is used when loading
and a college is dead

UR_SAVELOAD

College class

Change to The destroy function has been made public, so it [UR_HOSTILE_ [College class
building is now able to be called externally when the BUILDING_CO

college is attacked MBAT
End screen Points as a second win condition were added, UR_GAME_WI [EndScreen
wincheck so we wrote a function to check if points N class

requirements based on player difficulty setting

were met before win
Game difficulty To meet the requirement of multiple difficulty UR_DIFFICULT | MenuScreen
(edit Ul, change levels we had to add a selector to the start Y Class
starting stats) screen, and based on the user choice change

the starting levels of health.
College death The college now gives rewards, points and UR_HOSTILE | College class
implementation plunder when destroyed. BUILDING_CAP

TURE

Increase Cannon balls were not travelling far enough and | UR_FIRE_WEA | Cannonball
cannonball life would often miss close targets. PONS Class
Added points Adding points required a few changes to the old | FR_POINTS_U

game, for example adding a row in the in game | PDATE

stats, adding a point field within pirate and UR_EARN_POI

making game events (time passing, destruction | NTS

of a college) give points. FR_POINTS_T

RACKING

Remove physics Due to the fact that objects in the physics world
manager ID's are stored sequentially in an arraylist we

cannot simply remove them. We instead must

set them as inactive meaning that they do not

interact with the physics world.

This must be done after the world steps through

and not while in as this will cause an error.

Hence if an object must be removed from the

world its id is stored in a list. After every update

the physics manager will loop through the items

and set them as inactive.
Game screen The game checks that the player is alive in the GameScreen
check player game screen so it knows whether or not to class

health

switch to the end screen

Added This allowed us to remove entities when they RigidBody
removeFromPhysi | were no longer needed. Previously they had just class
csWorld to rigid been teleported off screen. Now they should no
body longer react with the physics world, so should
have less of a resource impact.
Remove static The health functions in pirate were static, which Pirate class
methods made having multiple different pirates with
different healths difficult to implement. Other
methods such as adding plunder were made
non-static too.
Make array list of | This allows other methods to access the list of
ships public ships, for example when setting targets.
Writing new To save and load a previous game, we needed UR_SAVELOAD | Player class
getters and to be able to access key stats (ammo, position)
setters to save and set them to load. We wrote getters
and setters accordingly.
Change the zoom | The requirement was to fit a 13 inch screen, but | FR_VIEWPORT [Change
of the game when playing on one we noticed that in orderto | SCALING made in the
see an enemy college on an island you would constants file
have to run the boat against the shore. Zooming and used
out, so that more of the map could fit on a within the
screen makes the game more accessible for this GameScreen
screen size.
Added a quit Originally if ‘esc’ was pressed the game would UR_QUIT EndScreen
confirmation quit. This was not very user friendly, so we class
screen added a screen to confirm the user’s intent to

quit.

Unimplemented Features

Feature ID

Reason

UR_FRIENDLYSHIP

We ran into issues getting the NPCships to target other factions which would

ENCOUNTER have been the primary function of these ships and thus they were not
implemented.
UR_GAME_WIN We could not implement an “Ultimate objective” (the previous group has

series of quests to reach a win screen.

suggested a final boss battle to win the game), but instead we implemented a

