
Implementation

Cohort 1 Team 9

Dominic Hall
Firas Marzouk
Ben Morrison

Harry Whittaker
Amelia Wigglesworth

Zehang Li



3. (a)
https://github.com/yorkpirates/Assessment-2-Game
https://assessment2.yorkpirates.uk/game/Pirate-Game-Group-9.jar

3. (b)

Implementation Architecture

Our code implements the architecture by sticking primarily to the hierarchy that is laid out in
the abstract.This can be seen primarily by how entities are composed. Entities ,which would
be classified as Game Objects ,are composed from components giving basic functionality
which can be later built upon. Such as the Renderable component which holds sprite and
other graphics related things. This can be seen in figure 3.1.3 where you can see the
composition of entities and which components they use.

When we have made changes to the code they have primarily been changes to inherited
classes which already conform to the architecture and have endeavoured to keep them
inline with it. When we have added classes we have kept to the architectural design by
adding in classes that stick to the predefined abstraction and fitting them into the
architecture.

Implementation of Requirements

Our code implements the requirements by constructing first the foundational layer which is
the game world and then populating it with actors/entities. The code gives them the ability to
interact with the world and these interactions are mediated by Managers. It also gives the
player control over one of them thus allowing the player to interact with other entities and the
world. This allows the code to meet the requirements as it provides the functionality required
by it primarily for the player.

We made additions to the inherited code as well as modifications to meet the requirements
such as adding monsters and weather and their interactions with the player and the world.

Changes to Previous Software

We added a save game file that was XML along with methods for both reading and writing
this format. We chose to use the STAX parser because of its speed and memory efficiency.
The structure of how it parses the file in a linearly sequential manner also suited the
functionality we wanted of loading a game.

Another significant new feature was the Shop. The requirement ‘UR_SPEND_MONEY’
requires a way for the player to spend the plunder that they have earnt during game play. We
implemented a shop feature, with buttons a user can press to exchange money for goods,
such as ammo and power ups.

The previous game had not yet implemented the firing of cannonballs from a college to a
ship. To implement this we had to write a new class, as the previous cannonball classes only
allowed a cannonball to be fired from a ship. Our version of the cannonball - which would fire
from colleges only - would give more damage, and fire directly at the user in regular intervals
to increase the difficulty of attacking the college - the user will always have to be on the
move.

The table below outlines the significant changes that we made to the previous software,
including our justification for doing so, the requirements it met and the architecture it
impacted.



Implemented Features

Change Justification Requirement Architecture

Changes to
college for saving

Is alive now returns a bool, so when saving we
know whether or not the college is alive.

Added a method to destroy all college buildings
effectively killing it, which is used when loading
and a college is dead

UR_SAVELOAD College class

Change to
building

The destroy function has been made public, so it
is now able to be called externally when the
college is attacked

UR_HOSTILE_
BUILDING_CO
MBAT

College class

End screen
wincheck

Points as a second win condition were added,
so we wrote a function to check if points
requirements based on player difficulty setting
were met before win

UR_GAME_WI
N

EndScreen
class

Game difficulty
(edit UI, change
starting stats)

To meet the requirement of multiple difficulty
levels we had to add a selector to the start
screen, and based on the user choice change
the starting levels of health.

UR_DIFFICULT
Y

MenuScreen
Class

College death
implementation

The college now gives rewards, points and
plunder when destroyed.

UR_HOSTILE_
BUILDING_CAP
TURE

College class

Increase
cannonball life

Cannon balls were not travelling far enough and
would often miss close targets.

UR_FIRE_WEA
PONS

Cannonball
Class

Added points Adding points required a few changes to the old
game, for example adding a row in the in game
stats, adding a point field within pirate and
making game events (time passing, destruction
of a college) give points.

FR_POINTS_U
PDATE
UR_EARN_POI
NTS
FR_POINTS_T
RACKING

Remove physics
manager

Due to the fact that objects in the physics world
ID's are stored sequentially in an arraylist we
cannot simply remove them. We instead must
set them as inactive meaning that they do not
interact with the physics world.
This must be done after the world steps through
and not while in as this will cause an error.
Hence if an object must be removed from the
world its id is stored in a list. After every update
the physics manager will loop through the items
and set them as inactive.

Game screen
check player
health

The game checks that the player is alive in the
game screen so it knows whether or not to
switch to the end screen

GameScreen
class



Added
removeFromPhysi
csWorld to rigid
body

This allowed us to remove entities when they
were no longer needed. Previously they had just
been teleported off screen. Now they should no
longer react with the physics world, so should
have less of a resource impact.

RigidBody
class

Remove static
methods

The health functions in pirate were static, which
made having multiple different pirates with
different healths difficult to implement. Other
methods such as adding plunder were made
non-static too.

Pirate class

Make array list of
ships public

This allows other methods to access the list of
ships, for example when setting targets.

Writing new
getters and
setters

To save and load a previous game, we needed
to be able to access key stats (ammo, position)
to save and set them to load. We wrote getters
and setters accordingly.

UR_SAVELOAD Player class

Change the zoom
of the game

The requirement was to fit a 13 inch screen, but
when playing on one we noticed that in order to
see an enemy college on an island you would
have to run the boat against the shore. Zooming
out, so that more of the map could fit on a
screen makes the game more accessible for this
screen size.

FR_VIEWPORT
_SCALING

Change
made in the
constants file
and used
within the
GameScreen

Added a quit
confirmation
screen

Originally if ‘esc’ was pressed the game would
quit. This was not very user friendly, so we
added a screen to confirm the user’s intent to
quit.

UR_QUIT EndScreen
class

Unimplemented Features

Feature ID Reason

UR_FRIENDLYSHIP
ENCOUNTER

We ran into issues getting the NPCships to target other factions which would
have been the primary function of these ships and thus they were not
implemented.

UR_GAME_WIN We could not implement an “Ultimate objective” (the previous group has
suggested a final boss battle to win the game), but instead we implemented a
series of quests to reach a win screen.


