
Continuous Integration

Cohort 1 Team 9

Dominic Hall
Firas Marzouk
Ben Morrison

Harry Whittaker
Amelia Wigglesworth

Zehang Li



5. (a)

As a group we decided it would be useful to use a continuous integration method to ensure
that implementation of code during the programming of the game was done in a smooth and
safe manner. As there are multiple programmers adding to the code at once, it is not only
easier for us to use a continuous integration method, but safer to ensure no code is
overwritten or deleted by mistake that may have severe consequences with the execution of
the code.

To summarise our working method, we have a central main code that is stored online using
the version control software, Git; each of us can create a copy of it to work on locally so as to
not directly edit the central code. Once we are happy with the modifications made, we
attempt to merge it back with the main code which is done autonomously. If there are no
conflicts it will merge quite simply, and update for everyone. However if there are conflicts,
for example when a part of the code fails a unit test or is modified differently to the main
code that breaks something, or such as two programmers modifying the same piece of code,
then it gives an opportunity to rectify any problems caused and ensure the optimal code is
written and merged within the main.

5. (b)

Our method of continuous integration consists of using GitHub to ‘branch off’ (make a local
copy of) the main code, and for each of us to individually modify and implement changes to
the code simultaneously without creating immediate and lasting conflicts. We chose to use
GitKraken to better visualise the branches currently active as people worked on them, so we
could see what point the code was at when the branch was created, and easily compare to
see the changes made.

Using this method of continuous integration, we are able to keep a record of each significant
modification made, and add an extra layer of security to the main code. Changes made are
checked over by a different programmer before they are merged into the main code to
ensure quality and effective programming is withheld, and that changes made are correct
and run without errors. Any conflicts that are created between branches (e.g. if two people
edit the same piece of code) when it comes to merging the code, are autonomously flagged
and can be easily compared and rectified with few issues. This preserves the integrity of the
main code.


