
Software Architecture
Abstract architecture was created with draw.io with basic relationships of the
program being shown on the diagram.
Concrete architecture was produced jointly by PlantUML and Adobe Photoshop. The
classes were separated into different categories with the connections within the
category shown on the diagram. The inter-category connections are later added
through Adobe Photoshop with lines colour coded for easier understanding.

Abstract Architecture

Fig 3.1.1: Diagram of the abstract architecture

Concrete Architecture

Fig 3.1.2: Diagram of miscellaneous classes



Fig 3.1.3: Diagram of Entity and Component classes



Fig 3.1.4: Diagram of
Manager classes



The abstract architecture is concerned with segmenting the large, monolithic task of
building the game into separate logical elements which could be planned and
reasoned about separately. Connections drawn between elements signify a logical
relationship rather than necessarily representing extension or composition relations
such as those featured in the UML diagram detailing the concrete architecture. For
example, factions/colleges ended up implemented as components and managed
implicitly, unlike what fig. 3.1.1 seems to suggest. Nevertheless, it is useful to see
them grouped under intangibles while planning the overall architecture.

Concrete architecture builds on the abstract in two main ways, by capturing
additional implementation details, and by reflecting the contribution of the game
engine to enabling game functionality.

Additional specifics of the game’s implementation are provided by means of detailing
the class structure of the code, annotating the classes with their significant
functionality in the form of methods and variables, and drawing the relationships
between the classes on the diagram.

The structure of the concrete architecture is informed by that of the game engine.
For example, we move from the UI element of the abstract architecture to a separate
Page class and its subclasses responsible for rendering and composition of UI
widgets, and the Renderable component and RenderingManager class for the
rendering of in-game objects such as ships and buildings: this is due to how the game
engine implements the rendering of different game aspects. In this way, concrete
architecture provides significantly more detail at a lower conceptual level than the
abstract.

It should be noted that significant discretion had to be exercised regarding the level
of detail captured in concrete architecture: it was neither feasible nor desirable to
capture the full level of detail of the code’s implementation. In the interest of using
the concrete architecture as a higher-level abstraction used for reasoning about and
planning the implementation, only significant functionality was captured and
boilerplate methods and variables have been omitted. Furthermore, we had to
deviate from the UML standard to depict certain relationships without making the
diagrams too large to display on A4 paper. Hence, figs 3.1.3 & 3.1.4 have the
relationships between entities & components and their respective managers
depicted in a shorthand form that we hope is nevertheless clear and informative.

Another point of note regarding the architecture and implementation is that during
the process of implementation, certain approaches were selected that were not
obvious during the architecture planning stage. For example, update methods called
by the game loop were leveraged to provide certain functionality, like monitoring for
game over conditions within the GameScreen class. These approaches were not
foreplanned and are hard to document within a UML class diagram. Hence, a better
reference to them would be perusing the rendered Javadocs associated with the
game.

Relations to requirements



FR_SHIP_KB_INPUT
By referring on the InputManager in fig 3.1.4, there are numerous functions in it
which accepts keyboard signals from the user for ship navigation

FR_VIEWPORT_SCALING
By referring to the Page class on fig 3.1.2, there is a class resize() which takes the
width and height of the display or window, thus being able to render the game on
displays with different sizes.

FR_PLAYER_FIRE
Referring to the Ship class in fig 3.1.3, there is a function called shoot which is called
the same function in the GameManager in fig 3.1.4, which allows users to fire
weapons.

FR_BULLET_TRAVEL
Referring to CanonBall class in fig 3.1.3, the method fire() takes the starting position,
direction and the sender ship, thus it shows the travel of the munitions sent from
ships.

FR_QUEST_TRACKING / FR_QUEST_RANDOMISE
In the Quest class of fig 3.1.2 and Quest manager of fig 3.1.4, there are methods
called checkCompleted() and createRandomQuests(), which showed the game can
track on player’s quest completions and also randomise quest objectives.

FR_GAME_WIN
In EndScreen class on fig 3.1.2, there is a label called wonText and a method called
win(), which are responsible for displaying status of the completion of boss
encounter.

NFR_WORLD_COLLISIONS
There are multiple classes and methods which are responsible for world collisions. In
PhysicsManager(fig 3.1.4), there is a method createMapCollision() which is
responsible for creating zones which can be collided into. In both Building and
TileMap classes (fig 3.1.3), there are methods called BeginContact() and EndContact()
which process the collision of entities in the game. And data of two entities colliding
will be stored in class Collisioninfo of fig 3.1.2.


