Software Architecture

Abstract architecture was created with draw.io with basic relationships of the
program being shown on the diagram.

Concrete architecture was produced jointly by PlantUML and Adobe Photoshop. The
classes were separated into different categories with the connections within the
category shown on the diagram. The inter-category connections are later added
through Adobe Photoshop with lines colour coded for easier understanding.

Abstract Architecture

ArraylList actors

~ woid CreateActors()

@ void show()

@ yoid render(float delta)

@ yoid hide()

@ void resize(int width, int height)
' void update()

@ void dispose()

9 void create()

© EndScreen

© Label wonText
© Label playerStats

® public void win()
~ void CreateActors()

?

© GameScreen

O Label healthLabel
O Label dosh
O Label ammo
O Label quesiDesc
O float accumulator

© MenuScreen

void Create Actors()
@ void show()
@ void hide()

“int reward

String description

boolean isCompleted

=
@
E Manage compaosition and Manage creation and
§' rendering of game elements ul Managers disposal of game elements
g
=
@
= Visual in-game objects, . : Abstract concepts like
E ships, buildings, etc. Game Obleds Imanglbles "guest", "faction”, eftc.
&
E Enable functionality of
nable functionali -
2| ovjects, collisions, health, Components Al ARl
s behaviour, etc. T
'S
Fig 3.1.1: Diagram of the abstract architecture
Concrete Architecture
@ Page @ Quest
O PirateGame parent String name

@ boolean checkCompleted(Player p)

© KillQuest

O Ppirate target

\

© LocateQuest

O Vector2 loc
O float radius

@ Node

@ LocateQuest{ector2 pos, float r)

@ void show()

 void CreateActors()

© Collisioninfo

© Fixture A
© Ficture 1B
© Body bA
© Body bB
© Ertity a

© Entity b

O Vector2 position
© float cost

© NodeHeuristic

@ float estimate(Node node, Node endNode)

© Path

O Node from
2 Node to

Fig 3.1.2: Diagram of miscellaneous classes

© TileMapGraph

O NodeHeuristic heuristic
O Array nodes

o Array paths

O Vector2 mapDim

O ObjectMap nodePaths

B TileMapGraph()
@ TileMapGraph(Tiledap map)
@ GraphPath<Node> findPath(Node start, Node goal)

2 QueueFIFO<Vector2> findOptimisedPath(Vector2 a, Vector2 b)

-
°

Shape tie_getShape{Rectanaie rectanale)
Vector? tile_getGenter(Rectangle rectandge!
vord cre pe (T 3

© Anaasaion

© rrrate

© RgkiBody rb

 Transtormt

© Atirioutes siributes

© SteeringBohavior behaviar

© SiperingAeceleralion steerngDupul

O it factiorid

© int punder

© boalean isAlive
it heakh

© it aifackDmg

™ void applyStesringi}

@ vou shoct{Vector2 i)

(©)oificutymanager

9 string level

© siring geiDificuly()
© void Sesectiiormal()

(© PhysicsManager

(© arioutes

© float boundngRedius

@ Companent

© CompanentType type

 Eniey parert
© FigidBony © e © o
PlayerGontroller| it bodyhi BinagFon fort "
|© © O bodyType Vectar3 forkCaiour T o rone
O Piayer player [— © Veetor2 haifDim o IapRenderer renderer
e i voxi Bogt " © Vector2 offsst Ot
TTUTT e Emﬂ"'::(© Stingtext © yokd BeginCortact()
.
® yoid applyForce(Vectar? force) © yoxi render() EREde)

©Tr=nsmrm

1 Vector2 postion
O Vectoi2 scale
1 flaat rotation

——— r

(©) Renaenngmanager
° rengertiems

Araistiavers
© Orth lcCamera camera
© SprteBigtch bateh

id rendel

(©) Rresourcemanager

© boclean loaded
© AssetiManager manager
I

Araviistios
© Arrayst leblaps

© bookean isTagged

youd intiokze(booiean drawDebugl
® int createBody(BodyDef bDef, FotureDef fDef, RigidBody rb)
"

®c

© hoolean initialized

© vold begnContact{Contact contact)
® vold endContact(Contact contact)

contact,

ontact contact, impuise) |

(©) inputmianager

© poolean keyDown(int keytode)

boolean keyUp(int keycade)

© poolean keyTypea(cnar character)

boolean tauchDaown(int screen’, int screen., int pointer, int button)

olean tauchUp(int screen. int screenY, int pointer, int button)

 boolean touchDragged|int screen, int screen. int painter)
boolean mouseMoved(int screeni, int screeny)
* boolean scrollea(fioat amoUREK, fioat amounty)

9 Stip paren:
© woid fire(Vector2 pas, Vector? dr, Ship sender)

O o $ped
© Colsge parent

 vold fre Vectar2 pos, Vectar2 di, Ship sener)

‘@ recsnip| || [(@)piayer

—ee— |\

Fig 3.1.3: Diagram of Entity and Component classes

© Siting bulginghiame. @ sw BT

© it s 19] A =
‘@‘W"M‘D ~ Boakin 409 9 Veclor2 cureniOir Cl a 9 Arrgyist buildngames
_ s pos, B % ot Heaty a Aoyt ist ulldngs

boctean saiie()
' :xmu!chw”»m; S o quiditaciéy eamy) = ola spaun(stang cooun

 youd EndCantack Calisioninta Infa) .“‘: Dn.::t':'['" mangy) vaid isAlive()

® void EnterTriggerCalisianinta info) L

® void ExtTrigger(Colisioninfo info)

© enity
ET

ot eniyCount
© String entiyhame
O Arrayist comganents

¥0Id raIseEvENiS(CompanEntEvent. . events) |

© HashMap foniG enerators
© Hashiap fonts

® int addTeature(String

Patn
inl addT estureAlas(String fPath)
* nt addTileMap(String fPath

* int addFoniGenerator(String fontPath)
°

© yoid loadAssets
® void checkAd:

© camentanager
9 Aragist factons
o

© Arrayt ist ballCache
© Woriahzp map

m
© TileMapGraph mapGraph
© void CreatePlayer(

.

© auestanager
© arravlist alQuests

© void createRandomOuests()
© y0(d checkCompletea()

© ResourceManager

O poolean loaded

O Assethanager manager
O Arraylist ids

O ArrayList tileMaps

O HashMap fortGenerators
O HashMap fonts

@ int addTexture(String fPath)

@ int addTextureAtlas(String fPath)

@ int addTileMap(String fPath)

@ int addFortGenerator(String fontPath)

@ int createFont(int font_generator_id, int fortSize)
@ void loadAssets()

B yoid checkAdd()

© RenderingManager

O ArrayList rendertems

O Arraylist layers
O OrthographicCamera camera

O SpriteBatch batch
@ void render()

© PhysicsManager

O World box2DWorld
O ArrayList box2DBodies

@ yoid Initialize(boclean drawDebu:

@ int createBody(BodyDef bDef, FixtureDef fDef, RigidBody rb
B Shape tile_getShape(Rectangle rectangle

B ector? tile_getCenter(Rectangle rectangle

@ yoid createMapColision(TileMap map)

Entities and Companents

© EntityManager

O ArrayList entityNames

O Arraylist entities

O Arraylist components

O Inputianager inpManager

@ |nputManager getinputhanager

@ yoid addComponent{Component ¢

@ void changeMame(String prev, String new.
@ yoid raiseEvents(ComponentEvent... comps)

;

4
© GameManager

O Arraylist factions

O Arraylist ships

O Arraylist ballCache

O WorldMap map

O TileMapGraph mapGraph

@ void CreatePlayer()

@ void CreateNPCShip(int factionled)

@ void CreateWorldMap(int mapld)

@ void shoot(Ship p, Vector2 dir)

@ QueusFIFO getPath(Vector2 loc, Vector2 dst)

© CollisionManager

Fig 3.1.4: Diagram of
Manager classes

O hoolean inttialized

@ yoid beginContact(Contact contact)

@ yoid endCortact{Contact contact)

@ yoid preSolve(Contact cortact, Manifold oldManifold)

@ yoid postSolve(Contact contact, Contactimpulse impulse)

(©) oifticurtymanager
O string level

@ string getDifficulty()
© void SelectNormal()
© void SelectEasy()
© void SelectHard()

© InputManager

@ poolean keyDown(int keycode)

@ poolean keyUp(int keycode)

@ poolean keyTyped(char character)

@ poolean touchDown(int screeny, int screen’, int pointer, int button)
@ poolean touchUp(int screen), int screen | int pointer, int button)

@ poolean touchDragged(int screeny, int screen’ | int poirter)

© poolean mouseMoved(int screenX, int screen’y)

@ poolean scrolledfloat amountX, float amount'y)

© QuestManager

o

ArrayList alQuests

@
[]

void createRandomQuests
void checkCompleted

The abstract architecture is concerned with segmenting the large, monolithic task of
building the game into separate logical elements which could be planned and
reasoned about separately. Connections drawn between elements signify a logical
relationship rather than necessarily representing extension or composition relations
such as those featured in the UML diagram detailing the concrete architecture. For
example, factions/colleges ended up implemented as components and managed
implicitly, unlike what fig. 3.1.1 seems to suggest. Nevertheless, it is useful to see
them grouped under intangibles while planning the overall architecture.

Concrete architecture builds on the abstract in two main ways, by capturing
additional implementation details, and by reflecting the contribution of the game
engine to enabling game functionality.

Additional specifics of the game’s implementation are provided by means of detailing
the class structure of the code, annotating the classes with their significant
functionality in the form of methods and variables, and drawing the relationships
between the classes on the diagram.

The structure of the concrete architecture is informed by that of the game engine.
For example, we move from the Ul element of the abstract architecture to a separate
Page class and its subclasses responsible for rendering and composition of Ul
widgets, and the Renderable component and RenderingManager class for the
rendering of in-game objects such as ships and buildings: this is due to how the game
engine implements the rendering of different game aspects. In this way, concrete
architecture provides significantly more detail at a lower conceptual level than the
abstract.

It should be noted that significant discretion had to be exercised regarding the level
of detail captured in concrete architecture: it was neither feasible nor desirable to
capture the full level of detail of the code’s implementation. In the interest of using
the concrete architecture as a higher-level abstraction used for reasoning about and
planning the implementation, only significant functionality was captured and
boilerplate methods and variables have been omitted. Furthermore, we had to
deviate from the UML standard to depict certain relationships without making the
diagrams too large to display on A4 paper. Hence, figs 3.1.3 & 3.1.4 have the
relationships between entities & components and their respective managers
depicted in a shorthand form that we hope is nevertheless clear and informative.

Another point of note regarding the architecture and implementation is that during
the process of implementation, certain approaches were selected that were not
obvious during the architecture planning stage. For example, update methods called
by the game loop were leveraged to provide certain functionality, like monitoring for
game over conditions within the GameScreen class. These approaches were not
foreplanned and are hard to document within a UML class diagram. Hence, a better
reference to them would be perusing the rendered Javadocs associated with the
game.

Relations to requirements

FR_SHIP_KB_INPUT
By referring on the InputManager in fig 3.1.4, there are numerous functions in it
which accepts keyboard signals from the user for ship navigation

FR_VIEWPORT_SCALING

By referring to the Page class on fig 3.1.2, there is a class resize() which takes the
width and height of the display or window, thus being able to render the game on
displays with different sizes.

FR_PLAYER_FIRE
Referring to the Ship class in fig 3.1.3, there is a function called shoot which is called
the same function in the GameManager in fig 3.1.4, which allows users to fire
weapons.

FR_BULLET_TRAVEL

Referring to CanonBall class in fig 3.1.3, the method fire() takes the starting position,
direction and the sender ship, thus it shows the travel of the munitions sent from
ships.

FR_QUEST_TRACKING / FR_QUEST_RANDOMISE

In the Quest class of fig 3.1.2 and Quest manager of fig 3.1.4, there are methods
called checkCompleted() and createRandomQuests(), which showed the game can
track on player’s quest completions and also randomise quest objectives.

FR_GAME_WIN

In EndScreen class on fig 3.1.2, there is a label called wonText and a method called
win(), which are responsible for displaying status of the completion of boss
encounter.

NFR_WORLD_COLLISIONS

There are multiple classes and methods which are responsible for world collisions. In
PhysicsManager(fig 3.1.4), there is a method createMapCollision() which is
responsible for creating zones which can be collided into. In both Building and
TileMap classes (fig 3.1.3), there are methods called BeginContact() and EndContact()
which process the collision of entities in the game. And data of two entities colliding
will be stored in class Collisioninfo of fig 3.1.2.

